
NASA Technical Memorandum 102861

An Integrated Approach to
System Design, Reliability,
and Diagnosis

F. A. Patterson-Hine and David L. Iverson

(._,AgA-Tm-10286t) AH [i_TEG,._ATED APPF_ACH TO

SYSTEM OES[GNt RELIA;I_!LIIY, ANO OIAt%NflSIS

(NASA) 17 p CSCL 13_

G.;/._I

Nql-1542b

December 1990

NA.._g
National Aeronautics and

Space Administration

NASA Technical Memorandum 102861

An Integrated Approach to
System Design, Reliability,
and Diagnosis
F. A. Patterson-Hine and David L. Iverson, Ames Research Center, Moffett Field, California

December 1990

NationalAeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

SUMMARY

The requirement for ultradependability of computer systems in future avionics and space appli-

cations necessitates a top-down, integrated systems engineering approach for design, implementa-

tion, testing, and operation. The functional analyses of hardware and software systems must be

combined by models that are flexible enough to represent their interactions and behavior. The infor-

mation contained in these models must be accessible throughout all phases of the system life cycle in

order to maintain consistency and accuracy in design and operational decisions. One approach being

taken by researchers at Ames Research Center is the creation of an object-oriented environment that

integrates information about system components required in the reliability evaluation with behav-

ioral information useful for diagnostic algorithms. Procedures have been developed at Ames that per-

form reliability evaluations during design and failure diagnoses during system operation. These pro-

cedures utilize information from a central source, structured as object-oriented fault trees. Fault trees

were selected because they are a flexible model widely used in aerospace applications and because

they give a concise, structured representation of system behavior. The utility of this integrated envi-

ronment for aerospace applications in light of our experiences during its development and use is

described. The techniques for reliability evaluation and failure diagnosis are discussed, and current

extensions of the environment and areas requiring further development are summarized.

INTRODUCTION

The presentation of information about the design and operation of complex systems is a central

issue in the development of information systems that support all phases of a system's life cycle.

Engineers use various models of the system's configuration and behavior as they move through

requirements specification, design, manufacturing, assembly, and integration, and on to operation of

the system. Some models support the analysis of subsystems, whereas others facilitate the assess-

ment of system-level interactions and interfaces. Typically, data obtained during early phases of the

life cycle are needed in a different format as input to other models later in the life cycle. A flexible,

adaptable information representation can ease the transitions between the various models.

Computer-based information systems are being developed at NASA that focus initially on design

automation as a foundation for the development of design knowledge capture systems (ref. 1).

Design automation can be achieved by integrating currently available software packages such as

computer-aided design (CAD) tools, data base packages, and computer-aided manufacturing (CAM)

tools. Many of these products are implemented in an object-oriented environment because that

environment promotes the development of software systems that are modular, extendable, flexible,
and concise.

These design automation products can capture the substance of a complex system; however, fur-

ther development of integrated tool sets is required to capture how and why a design satisfies func-

tional requirements. Results of engineering analyses such as reliability assessment and design studies

of fault detection, isolation, and recovery (FDIR) systems characterize a subset of these require-

ments. Two tools, OBREL (ref. 2) and the Fault Tree Diagnosis System (FTDS) (refs. 3,4) perform

suchanalyses.Thesetoolsaccessacentral,object-orientedknowledgebase,andgraphicinterfaces

enable engineers to interactively modify their designs and get immediate feedback on the effects of

the changes. Reliability models are useful throughout the lifetime of the system to identify critical

components and functions, but are often not updated as the system is modified. When the tools

access a central knowledge base, the latest information is automatically used in each analysis. For

instance, modifications made as a result of a reliability study are immediately incorporated in the

FDIR system. The tools are developed for use on workstations which are commonly found on engi-

neers' desks, where they can be used just as a hand calculator would be.

OBREL and FTDS are composed of algorithms for system reliability evaluation and fault diag-

nosis that are based on an object-oriented fault tree representation. Fault trees are powerful tools for

characterizing the behavior of complex systems. They are straightforward, concise models of the

relationships between system components. Fault trees, although traditionally used as tools in design

and safety assurance, are also used for fault diagnosis (refs. 5-9). Several of these diagnostic applica-

tions pre-process the fault tree to reduce it to a more manageable form. In other cases, the fault trees

are used to aid knowledge acquisition for rule-based fault diagnostic systems. Our system enhances

these implementations by replacing the knowledge base of if-then rules with the object-oriented fault

tree representation.

The integrated reliability analysis and fault diagnosis environment is described here, first by pre-

senting the object-oriented fault tree representation and reliability evaluatiG, _ procedures, and then by

incorporating additional information required for fault diagnosis and describing the diagnostic rou-

tines. Final sections discuss future work in each of these areas and summarize our experiences with

this system.

The graphical interfaces described herein were developed by Jack Liao of Ames Research
Center.

RELIABILITY CALCULATIONS

A fault tree is a graphical representation of the logical relationships between the components in a

system. The structure of the tree describes how the system can reach an undesired state. The tree is

constructed by defining an undesired state and the events that would have to occur to put the system

in that state. Primary or basic events in the tree represent fault events such as component failures.

Logic gates are used to represent combinations of events that would cause the next-level event to

occur. Logical AND gates indicate that output from an event occurs only if all of the input events

occur; OR gates indicate that output occurs if at least one of the input events occurs. An example

fault tree is shown in figure 1.

The object-oriented paradigm is well suited for representing the hierarchical structure of a fault

tree. Fault tree evaluation can produce quantitative results including probabilities of the occurrence

of system failures and quantitative rankings of component contributions to system failure. Most

techniques for evaluating fault trees underutilize the information about system structure and are,

therefore, inefficient and needlessly complex. Object-oriented representations provide the flexibility

2

thatis neededin definingstructuresto representfault treelogicgatesandbasiceventdata,andthe
complexinterrelationshipsthatexistbetweenthem.An object-orientedrepresentationof thefault
treeenablesaccessof treestructuralinformationby evaluationalgorithms,greatlyreducingthetime
requiredfor solution.Thesefault treemodelsarealsoeasilyupdatedto reflectsystemcompositionor
configurationmodifications,andcanbereevaluatedquickly afterupdatesby usingrecursivetree
evaluationprocedures.

Fault Tree Object Descriptions

An example fault tree object, corresponding to the top event of tile fault tree in figure 1, is shown

in figure 2. The object contains slots for information such as the name of the event, the type of event,

event inputs and outputs (children and parent(s), respectively), indications of the locations of

repeated tree events, and the probability of occurrence for each event. Alternative solution algo-

rithms may require different parameters, but the object-oriented descriptions are easy to modify and

expand.

The fault tree objects are created using a graphical tree editor. This allows the object definitions

to be transparent to the user so that a thorough understanding of the principles of object-oriented

programming is not necessary. The system designer can choose between logic gate and basic event

definition by clicking on the appropriate icon displayed beside the editor window. The parent-child

links are stored in each event object automatically by using a mouse to graphically connect events as

a tree. Other parameters are defined and entered via pop-up windows.

Fault Tree Evaluation

OBREL performs a quantitative evaluation of the fault tree using a combination of standard fault

tree reduction techniques modified for the object-oriented implementation. A bottom-up procedure is

used for subtrees that do not contain repeated events, and a recursive, top-down algorithm is used for

subtrees that contain repeated events. The major difficulty in solving fault trees quantitatively

involves events that are repeated in more than one location in the tree. In those cases, the tree as a

whole is not statistically independent, and special algorithms are required for the solution. Conven-

tional fault tree codes apply these algorithms, which usually have much larger computer resource

requirements than solution algorithms for statistically independent trees, to the entire tree. Modular-

ization procedures can be used to locate and simplify statistically independent subtrees prior to tree

evaluation to reduce the tree to a simpler form; however, conventional procedures only simplify sub-

trees that are statistically independent of every other event in the tree. Modularization is more effec-

tive when it can be tailored to fit the specific algorithm. For instance, in the case of the top-down

recursive algorithm utilized in this implementation, subtrees need only be statistically independent of

a specific subset of tree events, not of the entire tree. Using this algorithm, the tree is evaluated by

recursively simplifying sets of events, and the independence of an event is analyzed with respect to

the set of events being simplified at that point in the evaluation. The tree is effectively modularized

dynamically at each point in the evaluation.

3

Thelocationsof repeatedeventsarepropagatedup thetreeandstoredin eacheventobject.This

information is used by the modularization procedure; it is also used to determine which evaluation

procedure is required for the particular event. Unlike many conventional fault tree evaluation codes,

which calculate the probability of occurrence of the top event only, OBREL produces results for

every event in the tree. The intermediate results are stored in each event object as they are calculated

and, along with the specialized modularization procedure, are used to improve the performance of

the top-down algorithm. The details of this approach are presented in reference 2 and will not be

repeated here, but the following example will illustrate key features of the evaluation process.

Example 1

The fault tree shown in figure 1 is a moderate-size tree with several repeated basic events and a

repeated subtree. Events 28 and 19 appear more than once in the tree, and the entire subtree with

OR-GATE 20 as the top node appears below both AND-GATE 2 and AND-GATE 3. The triangular

symbol shown in the diagram is a transfer gate, in fault tree terminology, and is used to indicate a

continuation in the tree structure. The repeated subtree is not statistically independent of the rest of

the tree structure because event 19 appears outside the subtree structure as well. The combination of

algorithms utilized by OBREL presents a unique solution process, combining the efficient bottom-up

solution for most of the tree with the top-down solution that is required for ,he evaluation of only a

few of the events.

The modularization procedure propagates information about the location of events 19, 20, and 2q

throughout the tree objects. As an example, NODE 28 is stored in the :dependent slot of

OR-GATE 34, OR-GATE 32, OR-GATE 30, OR-GATE 26, OR-GATE 25 (from the second occur-

rence), and finally AND-GATE 24. The :dependent-eval slot of AND-GATE 24 contains NODE 28_

indicating that the top-down algorithm must be used to evaluate this gate because of the multiple

occurrences of NODE 28 in its structure. As the repeated event information is propagated througl,

the rest of the tree, it becomes apparent that only one other gate, OR-GATE 1, requires the top-dowv

solution. The number of recursive calls required to evaluate a fault tree is a performance indicator of

the solution technique. The solution of this tree, including quantitative results for every event in the

tree, requires 91 recursive calls and can be calculated in just a few seconds on a Macintosh II using

Allegro Common LISP. The solution of the top event using a simple top-down procedure that does

not utilize independence checks or intermediate result infomlation (since there are no intermediate

results calculated) requires over 580,000 recursive calls.

An additional benefit of using an object-oriented environment is the ability to modify the tree

and to reuse intermediate results in the evaluation of the new tree from branches that are not affected

by the modifications. For example, the unavailability of NODE 5 in the example tree was changed,

and the tree was recalculated in only 41 recursive calls. The number of previous results that can be

reused depends, of course, on the location of the modifications. In general this capability wilI result

in significant savings during parameter variation studies, and it is not available in other commonly

used fault tree evaluation codes. This capability greatly increases the productivity of design engi-

neers in comparing the reliability characteristics of similar systems.

4

FAULT DIAGNOSIS

FTDS is based on the failure--cause identification process of the diagnostic system described by

Narayanan and Viswanadham (ref. 9). Their system has been enhanced in the present implementa-

tion by replacing the knowledge base of if-then rules with an object-oriented fault tree representa-

tion. This allows the system to perform its task much faster and facilitates dynamic updating of the

knowledge base in a changing diagnostic environment. Accessing the information contained in the

objects is more efficient than performing a lookup operation on an indexed rule base. Additionally,

the object-oriented fault trees can be easily updated to represent the current system status.

Rules As Objects

Narayanan and Viswanadham suggested that the rule base for the diagnostic system be con-

structed directly from a fault tree representation of the system to be diagnosed. In their system each

fault tree gate is converted to an if-then rule. An AND gate becomes a rule with a conjunction of the

child events of the gate as an antecedent and the output event of the gate as a consequent. An OR

gate has a disjunction rather than a conjunction in the antecedent. The rules are stored as text in a

data base and when the system needs a rule it must perform a rule base lookup by using a failure

event as the lookup key. This involves a significant amount of processing overhead as the system

performs data base access and pattern matching. FTDS reduces this overhead considerably by repre-

senting rules as objects.

FTDS objects currently contain the same information as the if-then rules used by Narayanan and

Viswanadham, but can easily be expanded for additional capability. The event name stored in the

object is the consequent of the rule. The rule antecedent is found by following the children pointers

in the object to the antecedent events. New slots added to the fault tree objects to hold additional

parameters that are needed by the diagnostic routine are described in the next section. In the current

implementation of FTDS the objects are stored in a hash table and referenced by event name. This

scheme allows very quick reference to a rule, given its consequent event, and easy retrieval of rules

containing a given event in their antecedent. To find the rule object with failure event E as its conse-

quent, all that is required is a single hash table lookup. To find rules with event E in their antecedent,

the system only needs to look up the object for E and follow the pointers contained in that object's

parent slot.

Augmented Object Descriptions

The information used by the diagnostic system that needs to be added to the fault tree objects

includes contributory factors, or C-factors, and time intervals. The C-factor associated with a failure

event in a fault tree is an heuristic measure of the likelihood that the occurrence of the parent fault of

that event was caused by that event rather than by one of its siblings. The time interval of a failure

event under an OR gate is an estimate of how much time will elapse from the moment that event

occurs until its parent failure event occurs. In the case of a child event under an AND gate, the time
interval is the time between the moment when all of the child events have occurred and the occur-

rence of the parent event. Narayanan and Viswanadham call the resulting model an augmented fault

tree(ref. 9).Figure3 illustratestheadditionalslotsneededto representthis informationin thefault
treeobjects.

This informationcanbeenteredinto theenvironmentusingthegraphicalfault treeeditor
describedabove,whichgeneratesfault treeobjectdescriptions.

Diagnosis Process

The diagnostic system is initially given information about the system being diagnosed in the

form of normal and abnormal alarms (the nomenclature used by Narayanan and Viswanadham).

Each possible alarm corresponds to a system failure event and is referred to by the name of that

event. A normal alarm indicates that the failure event it is monitoring has not occurred, and an

abnormal alarm indicates that the failure event has occurred. In addition, each abnormal alarm

includes the suspected time at which the failure event occurred, and each normal alarm includes the

latest time the specified event was known to have not occurred.

The diagnostic process is initiated by specifying the estimated time of occurrence of a failure, the

current set of normal alarms and the time that each normal alarm was last confirmed, and a set of

abnormal alarms with estimated failure times. The diagnosis begins by infcr_'ing the relevant failure

events that must have occurred and those that could not have occulted basea on the information in

the normal and abnormal alarm sets. The alarm sets are updated accordingly. The system uses the

alarm sets to guide its search of the diagnosis space. It does not consider those portions of the diag-

nosis space with diagnoses containing sets of basic failure events that would cause the occurrence of

a failure in the normal alarms set. Also, those portions of the search space with diagnoses containing

abnormal alarms are searched early in the diagnosis process. The system also checks possible diag-

noses for temporal and causal consistency. The time-of-occurrence information provided for each

alarm is used to propagate temporal constraints throughout the fault tree.

Using the abnormal alarm information, the system selects starting points for the diagnostic pro-

cess, and builds constraint sets that help to narrow the diagnosis search space. After this information

has been gathered, the system uses heuristically driven backward chaining to find a set of basic

failure events that are a likely cause of the failure being diagnosed. More information about this

approach can be found in the description of the failure--cause identification process in Narayanan an, t

Viswanadham (ref. 9) and in the system description by Iverson and Patterson-Hine (refs. 3,4).

The diagnostic process can be examined using a graphical displayer which allows the user to

enter alarm information interactively and then view the alarm-propagation and backward-chaining

procedures that produce the likely cause of system failure. The effectiveness of the fault tree model

of system behavior under various failure situations can be studied. Fault trees are developed in

varying levels of detail (determined by the particular application), and the displayer can be used to

locate events in the tree that need greater resolution. The effects of component dependencies can also

be observed. The displayer could also be used to train operators to expect certain failure propagation

paths, given certain classes of alarms, and to become familiar with fault isolation procedures.

Example 2

This example considers a representative subset of the Space Station Freedom Data Management

System (DMS) which consists of three subsystems connected by a token ring network. In this sys-

tem, shown in figure 4, subsystems A and C consist of three processors each and subsystem B con-

sists of two processors. Each processor cluster is connected to the network through a pair of network

interface units (NIUs). In order to simplify the fault tree model, several assumptions are made about

the operating requirements of the system. First, all three subsystems must be operational as defined

in the following three assumptions for the system to be considered operational: (1) all processors in

each subsystem must be operational; (2) cluster A requires information periodically from cluster B,
and cluster C must receive information from both clusters A and B; and (3) one of the two NIUs in

each subsystem must be operational for a processor cluster to communicate with the other subsys-

tems. Second, the token ring network has the capability to bypass a single faulty link between

clusters, so segments of cable on both sides of a cluster must be faulty to prevent the cluster from

communicating with the other clusters on the network.

A fault tree model of this system is shown in figure 5. Events that contribute directly to the top

event,'representing system failure, are inputs to an OR gate. These events include failure of subsys-

tem A, failure of subsystem B, and failure of subsystem C. If any of those events occur, the system is

considered failed. The failure of subsystem A can be attributed to failure of the processor cluster,

failure of both of the NIUs, or failure of subsystem A to receive its required information from sub-

system B. Subsystem B is considered failed if either processor in the cluster fails. Cluster B requires

no communication from the other subsystems for successful operation, so failure of the network does

not cause subsystem failure in this case. The failure of subsystem C can be attributed to failure of the

processor cluster, failure of one of the NIUs, or failure of subsystem C to receive its required infor-

mation from subsystems A and B. Failure of a subsystem to receive required information can be

attributed to failure of any of the transmitting cluster' s processors, failure of the two links in the net-

work surrounding either the transmitting cluster or the receiving cluster, or failure of one of the

transmitting cluster's NIUs.

Suppose that at time 10 the DMS system goes down. A record of sensor data provides the infor-
mation that there was a failure in cluster C at time 8, and it was known that the cluster-C NIUs were

functioning at time 8 and that cluster A was functioning at time 9.5. The initial normal alarms set is

{(Cluster A, 9.5) (NIU Cluster C, 8)}, and the initial abnormal alarms set is {(Cluster C, 8)}. With

this information the diagnostician reasons from the fault tree that the failure of cluster C was suffi-

cient to cause the failure of the entire DMS system. This conclusion is reached by considering the

object representing the DMS system failure. That object is an OR gate with a child pointer to the

object representing the failure of cluster C. Since it is known that cluster C failed, it is assumed that

its failure is the cause of the DMS failure. The accuracy of this assumption depends, of course, on

the completeness of the fault tree in representing all possible causes of system failure. Any failures

inferred in this way from information in the abnormal alarms set will be added to the abnormal

alarms set along with their estimated failure times.

The diagnostic system then uses the information in the normal alarms set to determine which
other failure events have not occurred. Since the cluster-C NIU system is represented by an AND-

gate and the cluster-C NIUs were known to be functioning at time 8, it reasons that all the child

7

eventsof theobject representing that gate could not have occurred at a time before time 8 minus the

error-propagation time recorded in the time-interval slot in the cluster-C object. In other words, at

time 8 - t, where t is the error propagation time, the system knows that both NIU-C 1 and NIU-C2

were working properly. Similar reasoning is done based on the fact that cluster A is in the normal

alarms set. By backward chaining from this fact, the system infers that the cluster-A NIUs are func-

tioning properly, that the processors in cluster A are all running correctly, and that the information

from cluster B is reaching cluster A. This backward chaining continues until all relevant failure

events in the fault tree that could not have occurred are recognized. These events are added to the

normal alarms set, and the information in that set is used to guide the diagnosis. Notice that the

information obtained in backward chaining from a normal alarm is not necessarily restricted to the

branch of the fault tree under the original normal alarm. When a given failure event can contribute to

the cause of more than one other failure event it will appear in several places in the fault tree. For

instance, in this case it is determined that cluster B is operating correctly since cluster A is receiving

information from it. This inference provides the additional information that the failure in cluster C

was not caused by a failure to receive the needed information from cluster B, because cluster B was

down. Such repeated events can help narrow the diagnosis search space considerably.

Now that the diagnostic system has determined a high-level cause of the DMS failure, as well as

which failures definitely have and have not occurred, it goes on to find a set of basic events that were

a likely cause of the top-level failure. In this case it starts by backward chaining from the cluster-C
failure event. The first event it considers as a cause for the cluster-C failure is the failure of the

cluster-C processors. This is because the cluster-C processors node has the highest C factor of all of

cluster C's children that are not contained in the normal alarms set. Continuing the reasoning from

there, the diagnostic system reaches the conclusion that at least one of the cluster-C processors must

have failed sometime before time 6, and that this failure propagated through the system and caused

the entire DMS system to fail at time 10.

FUTURE WORK

Current efforts are being focused on specific aspects of the evaluation of the reliability of inte-

grated hardware and software systems and on more robust diagnostic procedures for real-time sys-

tems. In particular, techniques are being developed to model the functional interactions of hardware

and software components in very large systems such as those on Space Station Freedom. Traditional

approaches such as Markov chains, used to assess the reliability of safety-critical systems, are inca-

pable of handling the size and complexity of these highly integrated designs, because the models

grow quite large. A new hybrid modeling technique is being developed which augments conven-

tional fault trees, themselves incapable of modeling dynamic behavior, with Markovian models that

describe dynamic behavior quite naturally. Modularization procedures are being developed so that

the models can be partitioned into smaller pieces that can be solved using conventional algorithms.

Techniques for integrating models of software functionality are also being investigated. It is common

practice to include events in a fault tree that represent modules of software critical to the operation of

the system. If the modules of software are designed to be fault tolerant, utilizing recovery blocks or

n-version programming, the fault tree representation can be used to depict the structure of the mod-

ules, but it is not suitable for quantitative evaluation (ref. 10). The presence of undetected failures

8

andcorrelatedfaultsmustbetakenintoaccount,andtheappropriatemodelin thatcaseis the
Markovmodel(refs. 10,11).Methodsfor includingMarkovmodelsfor thesoftwarecomponentsin
thefault treemodelof theoverallsystemarealsobeingstudied.

A majorlimitation of diagnosticsystemsbasedsolelyoncomponentconnectivityandfailure
modeinformationis their inability to diagnosefailuresthatthedesignersdid notanticipate.Model-
baseddiagnosticsystemsovercomethis limitationby utilizing analyticalmodelsof thesystem,
whichcanbeusedto simulateactualsystembehavior.As currentdataonsystemstateis fedthrough
themodel,anomalousbehavioris detectedby comparingactualbehaviortrendswith expected
values.Onedrawbackof thesesystemsis the lengthof time it takesto run thesimulations.Methods
arebeingexploredto integrategraph-basedandmodel-basedtechniquessothattheadvantagesof
eachcanbeexploited(graphmodelsoffer conciserepresentationsof systembehaviorin failure
space,andmodel-basedapproachesareflexible androbust).TheThermalExpertSystem(TEXSYS)
projectat Amesintegratesarangeof techniquesfor real-timecontrolandfault diagnosisof a thermal
busprototypefor SpaceStationFreedom,demonstratingthatintegratedapproachesmaybemore
powerfulthananysingletechniquealone(ref. 12).Currentstudiesincludethedesignof interacting
on-boardandground-baseddiagnosticsystemsaswell asextensionsto diagnosticalgorithmsfor
multiple-faultdiagnosis.

CONCLUDING REMARKS

Two tools for engineering analyses of highly reliable systems, one for quantitative reliability

evaluation and the other for fault diagnosis, have been developed based on an object-oriented repre-

sentation of fault trees. The fault tree serves as a central knowledge base for the integrated tool set,

ensuring that consistent design information is used in both procedures. The tools have a graphical

interface for data entry and the display of results, thus enabling the engineer to modify system mod-

els easily and to understand the effects of the changes quickly. The availability of the models in an

accessible form improves the design process by eliminating redundant model development in various

stages of the life cycle. The object-oriented models are particularly useful since they are easily mod-

ified to characterize various aspects of system behavior, thereby promoting the development of

additional analysis tools that will access the same knowledge base.

9

REFERENCES

.

.

o

*

,

.

.

.

.

10.

11.

12.

Erickson, Jon D.; Crouse, Kenneth H.; Wechsler, Donald B.; and Flaherty, Douglas R.: Con-

siderations for a Design and Operations Knowledge Support System for Space Station

Freedom. NASA TM-102156, 1989.

Patterson-Hine, F. A,; and Koen, B. V.: Direct Evaluation of Fault Trees Using Object-

Oriented Programming Techniques. IEEE Trans. Reliability, vol. 38, no. 2, June 1989,

pp. 186-192.

Iverson, David L.; and Patterson-Hine, F. A: A Diagnosis System Using Object-Oriented Fault

Tree Models. Fifth Conference on Artificial Intelligence for Space Applications,

Huntsville, AL, May 1990.

Iverson, David L.; and Patterson-Hine, F. A.: Object-Oriented Fault Tree Models Applied to

System Diagnosis. Applications of Artificial Intelligence VIII, Orlando, FL, Apr. 1990.

Rodriguez, G.; and Rivera, P.: A Practical Approach to Expert Systems for Safety and Diag-

nostics. In Tech, vol. 33, no. 7, 1986, pp. 53-57.

Pipitone, F.: The FIS Electronics Troubleshooting System. Computer, vol. 19, no. 7, 1986,

pp. 68-76.

Weisbin, C. R.; de Saussure, G.; Barhen, J.; Oblow, E. M.; and White, J. C.: Minimal Cut-Set

Methodology for Artificial Intelligence Applications. IEEE 1st Conference on Artificial

Intelligence Applications, 1984.

Schwarzblat, M.; and Arellano, J.: An Expert Diagnostic and Prediction System Based on

Minimal Cut Sets Techniques. IEEE 2nd Conference on Artificial Intelligence Applica-

tions, 1985.

Narayanan, N. H.; and Viswanadham, N.: A Methodology for Knowledge Acquisition and

Reasoning in Failure Analysis of Systems. IEEE Trans. Systems, Man, Cybernetics,

vol. SMC- 17, Mar./Apr. 1987, pp. 274-288.

Hecht, Herbert; and Hecht, Myron: Fault-Tolerant Software. Fault Tolerant Computing: Theory

and Techniques. Vol. 11. D. K. Pradham, ed., Prentice-Hall, 1986.

ArIat, Jean; Kanoun, Karama; and Laprie, Jean-Claude: Dependability Modeling and Evalua-

tion of Software Fault-Tolerant Systems. IEEE Trans. Computers, Apr. 1990, pp. 504-513.

Glass, B. J.: A Model-Based Approach to the Symbolic Control of Space Subsystems. AIAA

Paper 90-3430, Portland, OR, 1990.

10

OR Gate

AND Ga_

NODE

TransferGate

Figure 1. Sample fault tree.

11

f
Name: GATE1

Type: OR gate
Children: (GATE2,

GATE3)
Parent:

Dependent:

Dependent-evah
Unavailability: 2.4e-05

Name of the fault tree object

T_y._: the type of event (gate or basic) represented
(AND gate, OR gate, NODE)

Children: pointers to the objects representing
the children of this event

Parent: pointer(s) to the parent event(s) of this event

Dependent: indicates whether an event that occurs more than once
in the fault tree is located below this event (determined during

tree evaluation)

Dependent-evah indicates whether an event occurs more than
once below this logic gate (determined during tree evaluation)

Unavailability: probability of failure for nodes and intermediate
results for gates

Figure 2. Example fault tree object.

.... Name of the fault tree object

f

Name:

Type: OR gate
Children: (InfoBtoA _

NIUClusterA

ProcClusterA)
Parent: SystemFailure

C-Factors: ((InfoBtoA 50) _L
(NIUClusterA 30)
(ProcClusterA 20))

Time-Intervals: ((InfoBtoA 1)
(NIUClusterA 1)
(ProcClusterA 1))

EOT:
LOT:

_=______ Ty_p_e:the type of event/rule representedClusterA (AND gate, OR gate, NODE)

Children: pointers to the objects representing the children of this event

(also the antecedent of the rule)

Parent: pointer(s) to the pareqt event(s) of this event

C-factors: heuristic measures of the likelihood that a given child event

caused the occurrence of this failure event (applies only to OR gates)

Time Intervals: estimate of the time Interval between the Instant of
occurrence of the child event and the occurrence of the parent event

(or the Instant when all of the child events of an AND gate have occurred)

EOT____:Earliest Occurrence Time, the last time Instant at which this failure

event had definitely not occurred (determined during diagnosis)
LOT: Latest Occurrence Time, the time at which this fault occurred
(abnormal alarm activation time, determined during diagnosis)

Figure 3. Augmented fault tree object.

12

SubSystem A

NIU - Network Interface Unit

L1, L2, L3 - Network Path

L3 L1

Token Ring
Network

SubSystem C

L2

SubSystem B

Figure 4. Sample DMS.

13

OatoT,0e_:_ I'Nooa'l_
DMSTOP)

! I f

(CLUSTERA _ _CLUSTERB) CLUSTERC

I
I

PROCCLUSTERC NIUCLUSTERC I

Figure 5. DMS fault tree.

14

Report Documentation Page
Nalonal Ae_onsu_cs ar_

Space Adminir_ation

1. Report No. 2. Government Accession No. 3. Recipienrs Catalog No.

NASA TM- 102861

4. Title and Subtitle

An Integrated Approach to System Design, Reliability, and

Diagnosis

7. Author(s)

F. A. Patterson-Hine and David L. Iverson

Performing Organization Name and Address

Ames Research Center

Moffett Field, CA 94035-1000

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, DC 20546-0001

5. Report Date

December 1990

6. Performing Organization Code

8 Performing Organization Report No.

A-90272

10. Work Unit No.

476-84-03

1 I. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14 Sponsoring Agency Code

15 Supplementary Notes

Point of Contact: F. A. Patterson-Hine, Ames Research Center, MS 244-4,

Moffett Field, CA 94035-1000

(415) 604-4178 or FTS 464-4178

16 Abstract

The requirement for ultradcpendability of computer systems in future avionics and space applications necessitates

a top-down, integrated systems engineering approach for design, implementation, testing, and operation. The functional

analyses of hardware and software systems must be combined by models that are flexible enough to represent their

interactions andbehavior.The information containedin thesemodelsmustbc accessiblethroughoutall phasesof the
systemlife cycle in order to maintainconsistencyandaccuracyindesignandoperationaldecisions.Oneapproachbeing
taken by researchers at Ames Research Center is the creation of an object-oriented environment that integrates
information about system components required in the reliability evaluation with behavioral information useful for
diagnostic algorithms. Procedures have been developed at Ames that perform reliability evaluations during design and
failure diagnoses during system operation. These procedures utilize information from a central source, structured as

object-oriented fault trees. Fault trees were selected because they are a flexible model widely used in,,_ac2e
applications and because they give a concise, structured representation of system behavior. The utility of this if_/i]ed
environment for aerospace applications in light of our experiences during its development and use is described. The
techniques for reliability evaluation and failure diagnosis are discussed, and current extensions of the environment and
areas requiring further development are summarized.

17. Key Words (Suggested by Author(s))

Fault tree, Systems engineering, Fault diagnosis,

Object-oriented programming, System reliability

18. Distribution Statement

Unclassified-Unlimited

Subject Category - 31

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 16 A02

NASA FORM 1626 0CT86
For sale by the National Technical Information Service, Springfield, Virginia 22161

